Amyloid Oligomers and Protofibrils, but Not Filaments, Self-Replicate from Native Lysozyme
نویسندگان
چکیده
Self-assembly of amyloid fibrils is the molecular mechanism best known for its connection with debilitating human disorders such as Alzheimer's disease but is also associated with various functional cellular responses. There is increasing evidence that amyloid formation proceeds along two distinct assembly pathways involving either globular oligomers and protofibrils or rigid monomeric filaments. Oligomers, in particular, have been implicated as the dominant molecular species responsible for pathogenesis. Yet the molecular mechanisms regulating their self-assembly have remained elusive. Here we show that oligomers/protofibrils and monomeric filaments, formed along distinct assembly pathways, display critical differences in their ability to template amyloid growth at physiological vs denaturing temperatures. At physiological temperatures, amyloid filaments remained stable but could not seed growth of native monomers. In contrast, oligomers and protofibrils not only remained intact but were capable of self-replication using native monomers as the substrate. Kinetic data further suggested that this prion-like growth mode of oligomers/protofibrils involved two distinct activities operating orthogonal from each other: autocatalytic self-replication of oligomers from native monomers and nucleated polymerization of oligomers into protofibrils. The environmental changes to stability and templating competence of these different amyloid species in different environments are likely to be important for understanding the molecular mechanisms underlying both pathogenic and functional amyloid self-assembly.
منابع مشابه
Distinct Annular Oligomers Captured along the Assembly and Disassembly Pathways of Transthyretin Amyloid Protofibrils
BACKGROUND Defects in protein folding may lead to severe degenerative diseases characterized by the appearance of amyloid fibril deposits. Cytotoxicity in amyloidoses has been linked to poration of the cell membrane that may involve interactions with amyloid intermediates of annular shape. Although annular oligomers have been detected in many amyloidogenic systems, their universality, function ...
متن کاملInhibitory Effect of Cinnamomum Zeylanicum and Camellia Sinensis Extracts on the Hen EggWhite Lysozyme Fibrillation
Background & Aims: Many neurodegenerative diseases including Alzheimer’s, Parkinson and Huntington diseases are associated with the deposition proteinaceous aggregates known as amyloid fibrils. Currently, there is no approved therapeutic agent for inhibition of fibrillar assemblies. One important approach in the development of therapeutic agents is the use of herbal extracts. At the present com...
متن کاملDispersible amyloid β-protein oligomers, protofibrils, and fibrils represent diffusible but not soluble aggregates: their role in neurodegeneration in amyloid precursor protein (APP) transgenic mice.
Soluble amyloid β-protein (Aβ) aggregates have been identified in the Alzheimer's disease (AD) brain. Dispersed Aβ aggregates in the brain parenchyma are different from soluble, membrane-associated and plaque-associated solid aggregates. They are in mixture with the extra- or intracellular fluid but can be separated from soluble proteins by ultracentrifugation. To clarify the role of dispersibl...
متن کاملNordihydroguaiaretic acid does not disaggregate beta-amyloid(1-40) protofibrils but does inhibit growth arising from direct protofibril association.
Nordihydroguaiaretic acid (NDGA) was observed by Ono et al. (J Neurochem 87:172-181, 2002) to decrease the fluorescence of thioflavin T associated with freshly extended amyloid beta-protein (Abeta) fibrils. They concluded that NDGA could disaggregate Abeta fibrils into aggregates that were larger than monomers or oligomers and did not bind thioflavin T. Such an effect could be of therapeutic im...
متن کاملSoluble oligomers from a non-disease related protein mimic Abeta-induced tau hyperphosphorylation and neurodegeneration.
Protein aggregation and amyloid accumulation in different tissues are associated with cellular dysfunction and toxicity in important human pathologies, including Alzheimer's disease and various forms of systemic amyloidosis. Soluble oligomers formed at the early stages of protein aggregation have been increasingly recognized as the main toxic species in amyloid diseases. To gain insight into th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 136 شماره
صفحات -
تاریخ انتشار 2014